
 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 2, February 2024

7

Self-Signed Certificate for Calibration Software
[1] Prathmesh Nitin Ghodake, [2] Nitin Gavankar, [3] Shailender Shekhawat

[1] [2] Computer Science and Engineering, Walchand College of Engineering, Sangli, Maharastra, India
[3] Calibration Company, India

Corresponding Author Email: [1] prathmeshghodke3545@gmail.com, [2] nitin.gavankar@walchandsangli.ac.in,
[3] shailender.shekhawat@gmail.com

Abstract— SSL/TLS and certificate authorities play a major role in the current web infrastructure. This article provides an overview

of how to generate a self-signed SSL/TLS certificate. Digital certificates that are not produced by a reputable external certificate issuer

and are self-signed by the entity whose identity they certify are known as self-signed certificates. Self-signed certificates are commonly

used for testing purposes or for small internal networks where the price and complexity of acquiring a trusted certificate are

unjustifiable. The article explains the steps involved in creating a self-signed certificate, including creating a private key, creating a CSR

(certificate signing request), and finally creating the self-signed certificate using the private key and CSR. This article gives an overview

of how to create a self-signed certificate.

Keywords: TLS/SSL, HTTP, HTTPS, OpenSSL, Certificate, man-in-the-middle attack.

I. INTRODUCTION

SSL allows clients to authenticate the identity of servers by

verifying their X.509 [1] digital certificates and reject

connections if the server’s certificate is not issued by a

trusted certificate authority (CA). A self-signed certificate is

a digital certificate created and approved by the

corresponding object it depicts, instead of a trusted

third-party Certificate Authority (CA). Unlike certificates

signed by a trusted CA, self-signed certificates are not

validated by a trusted third party, which means they are not

inherently trusted by default. However, they can be useful in

a variety of situations, such as for testing or development

environments, or for secure communication between devices

that trust each other. Self-signed certificates contain a public

key that can be used for encryption and authentication, as

well as other information about the entity it represents, such

as its name, contact information, and expiration date. They

are often used as a cost-effective way to secure internal

communication channels or for quick testing of secure

communication protocols without the need for a trusted CA.

However, because anyone can generate a self-signed

certificate and deploy it to impersonate a trusted website or

service, self-signed certificates do not provide the same level

of security as certificates signed by a trusted third-party CA.

As a result, it is important to only use self-signed certificates

when the risk of impersonation is low and to always verify

the certificate's authenticity before trusting it. Constructing a

compelling security warning dialog has been a demanding

mission for web browser vendors. There is Numerous

research [5], [6], [7], [8] have displayed that numerous users

in fact disregard warnings of SSL certificates. Notice that

users who carelessly disregard certificate warnings would be

undefended to the simplest SSL attacks. Many institutions are

choosing to manage their own Certificate Authority instead

of outsourcing to a third party [9].

The authentication system is the first line to prevent

unauthorized users from gaining access to the system [10].

Authentication protocols are capable of simply authenticating

the connecting party as well as authenticating itself to the

connecting party [11]. Authentication can be based on

different types of authentication tokens. Authentication

tokens are normally categorized into categories: something

known and something possessed [12].

II. BACKGROUND

A. TLS / SSL Protocol

Secure Sockets Layer (SSL) and Transport Layer Security

(TLS) are cryptographic protocols utilized to establish secure

communication over a network, ensuring information

confidentiality and integrity. It includes HTTPS, IMAPS,

SMTP, and XMPP [2]. The primary purpose of these

protocols is to facilitate the establishment of a secure

connection between the web server and a client, such as a

web browser. TLS is the next in line to SSL, and it provides

better security and improved performance. Secure Sockets

Layer (SSL) lets clients validate the individuality of servers

by verifying their X.509 [3]. SSL/TLS protocols work by

encrypting the data transmitted between the server and the

client, which makes it difficult for an attacker to intercept and

read the data. The utilization of digital certificates within the

protocols serves the purpose of verifying both the server and

client identities, effectively mitigating the risk of

man-in-the-middle attacks. SSL/TLS uses a combination of

symmetric and asymmetric encryption to secure the

communication between the server and the client. Symmetric

encryption is used to encrypt the data, and asymmetric

encryption is used to establish a secure connection and

exchange the keys used for symmetric encryption. SSL/TLS

protocols have become the standard for secure

communication on the internet and are used by numerous

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 2, February 2024

8

applications, such as web browsers, email clients, and

messaging apps.

TLS/SSL protocols provide several key benefits for

securing internet communication, including:

1. Confidentiality: TLS/SSL protocols encrypt data

transmitted between clients and servers, protecting it

from interception and eavesdropping.

2. Integrity: TLS/SSL protocols ensure that data

transmitted between clients and servers is not

tampered with or modified in transit, protecting it

from unauthorized changes.

Authentication: TLS/SSL protocols use digital certificates

to verify the identity of the server and protect against

man-in-the-middle attacks.

B. Certificate Authorities

Certificate Authorities (CAs) are organizations that issue

digital certificates and are the entities responsible for their

issuance used to verify the identity of a website or other entity

over the Internet. CAs plays a crucial role in authenticating

the identity of the requester of a certificate and ensuring that

the certificate contains accurate and reliable information

about the certified entity. In the context of self-signed

certificates, the term "CA" is used to refer to the entity that

issues the certificate to itself, rather than to an external

third-party organization. In a self-signed certificate, the entity

that generates the certificate acts as its own CA. This means

that the entity creates its public key infrastructure and uses it

to issue digital certificates that are signed using its private

key. Because self-signed certificates are authenticated by a

reliable intermediary CA, they are often not trusted by default

by web browsers and other software that rely on digital

certificates to verify the identity of a website or other entity.

Two types of certificates are domain validation (DV) and

extended validation (EV). Many Certificate Authorities allow

verification by putting a file in a certain URL or by modifying

the DNS record [4]. An EV needs more steps as the certificate

also confirms that the expectation is arriving at the meant

domain but additionally the individuality of the organization

or person attached to it. This procedure may incorporate

phone calls, individuality documentation, and even in-person

interviews correspondingly, EV certificates are harder to

inherit and commonly more costly. While self-signed

certificates can be a useful way for small organizations or

individuals to secure their web servers or other

internet-facing services, they are generally not recommended

for use on public-facing websites or other services that are

accessed by a wide range of users. This is because users may

not trust the self-signed certificate and may be discouraged

from using the service or may be vulnerable to

man-in-the-middle attacks if they do choose to trust the

certificate.

C. Root Store

Root stores are repositories of trusted root certificates that

are pre-installed on operating systems, web browsers, and

other software. Root stores are maintained by various

organizations, such as Microsoft, Mozilla, and Google. When

a client (such as a web browser) encounters a self-signed

certificate, it checks to see if the certificate's issuer (the entity

that signed the certificate) is in its root store. If the issuer is

not in the root store, the client will display a warning or error

message indicating that the certificate is not trusted. To avoid

this problem, some organizations create their root certificates

and distribute them to clients in advance. This is often done in

enterprise settings where the clients are controlled by a

central IT department. By distributing their root certificate,

the organization can issue self-signed certificates that are

trusted by their clients.

III. METHODOLOGY

A. Generate a PEM file

A PEM file is a format for storing SSL/TLS certificates

and private keys. It is a Base64-encoded format that contains

either a public or a private key. A PEM file is a format for

storing SSL/TLS certificates and private keys. It is a

Base64-encoded format that contains either a public or a

private key.

Figure 1: Generate PEM file

Here's what each part of the command does:

 Openssl: This is the command for the OpenSSL

toolkit.

 req: This will command generate a new CSR and a

new private key.

 -x509: This option tells OpenSSL to create a

self-signed certificate instead of a CSR.

 -newkey rsa:4096: This option tells OpenSSL to

generate a new 4096-bit RSA key pair.

 -keyout key.pem: This determines the filename to

which the private key should be saved (in PEM

format).

 -out cert.pem: This determines the filename to which

the certificate should be saved (in PEM format).

 -days 365: This determines the number of days the

certificate is valid.

Once the command is executed, OpenSSL will generate a

new RSA key pair, create a self-signed certificate with the

specified validity period, and save the private key to key.pem

and the certificate to cert. pem.

B. Generate Certificate Signing Request (CSR)

A self-signed certificate is a type of digital certificate that

carries its own signature, instead of being signed by a trusted

third-party entity. When creating a self-signed certificate,

you need to provide certain parameters that define the

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 2, February 2024

9

properties of the certificate. Here are the most common

parameters that are included in a self-signed certificate:

1. Common Name (CN): This is the primary identifier

for the certificate, and the server's complete domain

name, with all necessary qualifications (FQDN),

where the certificate will be utilized on.

2. Organization (O): This field specifies the legal name

of the organization that is responsible for the

certificate.

3. Organizational Unit (OU): This field specifies the

department or division within the organization that is

responsible for the certificate.

4. Country (C): This field specifies the two-letter ISO

code for the country where the organization is located.

5. State or Province (ST): This field specifies the name

of the state or province where the organization is

located.

6. Locality or City (L): This field specifies the full name

of the city where the organization is located.

7. Email Address: This field specifies the email address

of the person responsible for the certificate.

8. Public Key: This cryptographic key serves the

purpose of decrypting data and validate signatures.

The public key is typically included in the certificate.

9. Private Key: This cryptographic key serves the

purpose of decrypting data and signing messages. The

private key is typically kept confidential and is not

included in the certificate.

Validity Period: This determines the time that the

certificate is valid, typically measured in years.

Figure 2: Generate CSR file

C. Generate RootCA

A root CA (Certificate Authority) is an entity with a

reliable reputation is responsible for issuing digital

certificates that are used to verify the identity of websites and

other digital assets.

Create a root certificate using the private key with the

following command:

Figure 3: Generate your own Root CA

D. Sign CSR with Root CA

We sign CSR with our own Root CA that we created above

Figure 4: Sign CSR with our Root CA

<your_csr>.csr with the filename of your CSR.

<your_root_ca_certificate>.crt with the filename of your

self-signed root CA certificate,

<your_root_ca_private_key>.key with the filename of

your self-signed root CA private key,

<your_signed_certificate>.crt with the filename you

want to give your signed certificate,

<number_of_days> with the number of days that the

signed certificate should be valid.

As a result, the CA-signed certificate will be in the .crt file.

E. Install Certificate in Computer

1. Press Win + R type “MMC” Click OK.

2. Go to ‘File’ and click on Add/Remove Snap-in.

3. Click on ‘Certificate’ -> ‘Add’.

4. Select ‘User Account’ and click on ‘Finish.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 2, February 2024

10

5. Now, expand ‘Certificates’ -> ‘Trusted Root

Certification Authority’ -> ‘Certificate’, Right click

on it -> ‘All task’ -> ‘Import’.

IV. FLOW DIAGRAM

Figure 5: Flow diagram to generate a self-signed certificate.

V. BENEFITS OF SELF-SIGNED CERTIFICATE

Cost: It’s available at free of cost. There is no need to

purchase a certificate from a trusted third-party CA.

Control: With a self-signed certificate, the organization

has complete control over creating and distributing the

certificate. The organization can create and revoke

certificates as per their requirements.

Flexibility: Self-signed certificates are more flexible than

other types of certificates. They can be used when a trusted

third-party CA is unavailable, such as in testing or

development environments.

VI. LIMITATION OF SELF-SIGNED CERTIFICATE

Trust: The most significant limitation of self-signed

certificates is the lack of trust. Because the certificate lacks

the endorsement of a trusted third-party certification

authority, there is no way to establish the identity of the

organization.

Compatibility: Another significant disadvantage of

self-signed certificates is that they may not be compatible

with some older browsers and operating systems. This can

lead to issues when connecting to secure websites.

REFERENCES

[1] Cooper, David, Stefan Santesson, Stephen Farrell, Sharon

Boeyen, Russell Housley, and William Polk. Internet X. 509

public key infrastructure certificate and certificate revocation

list (CRL) profile. No. rfc5280. 2008.

[2] Dierks, Tim, and Eric Rescorla. The transport layer security

(TLS) protocol version 1.2. No. rfc5246. 2008.

[3] CA-Browser-Forum-BR-1.4.1.pdf (2016, Sept. 7) Baseline

Requirements Certificate Policy for the Issuance and

Management of Publicly Trusted Certificates. [Online]

Available: https://cabforum.org/baseline-requirements-

documents/

[4] CA/Browser Forum EVV1_6_0..pdf (2016, Jul. 1) Guidelines

for the Issuance and Management of Extended Validation

Certificates.[Online] Available: https://cabforum.org/

extended-validation/

[5] Dhamija, Stuart E. Schechter Rachna, Andy Ozment, and Ian

Fischer. "The Emperor’s New Security Indicators." (2007).

[6] Sunshine, Joshua, Serge Egelman, Hazim Almuhimedi, Neha

Atri, and Lorrie Faith Cranor. "Crying wolf: An empirical

study of ssl warning effectiveness." In USENIX security

symposium, pp. 399-416. 2009.

[7] Akhawe, Devdatta, and Adrienne Porter Felt. "Alice in

Warningland: A Large-Scale Field Study of Browser Security

Warning Effectiveness." In USENIX security symposium, vol.

13, pp. 257-272. 2013

[8] Felt, Adrienne Porter, Robert W. Reeder, Hazim Almuhimedi,

and Sunny Consolvo. "Experimenting at scale with google

chrome's SSL warning." In Proceedings of the SIGCHI

conference on human factors in computing systems, pp.

2667-2670. 2014.

[9] Patriciu, Victor V., and Aurel Serb. Design aspects in a public

key infrastructure for network applications security.

MILITARY TECHNICAL ACADEMY BUCHAREST

(ROMANIA) COMPUTER ENGINEERING DEPT, 2000.

 ISSN (Online) 2394-2320

International Journal of Engineering Research in Computer Science and Engineering

(IJERCSE)

Vol 11, Issue 2, February 2024

11

[10] Wang, Haiyuan. "Security Architecture for the TEAMDEC

System." PhD diss., Virginia Tech, 2000.

[11] Duncan, Richard. "An overview of different authentication

methods and protocols." SANS Institute (2001).

[12] Klemetti, Kari. "Authentication in Extranets." PhD diss.,

HELSINKI UNIVERSITY OF TECHNOLOGY, 2001.

[13] Web reference: https://aboutssl.org/installing-self-signed-ca-

certificate-in-window.

[14] Web reference: https://www.baeldung.com/openssl-self-

signed-cert.

